ULTRAGAN: ULTRASOUND ENHANCEMENT THROUGH ADVERSARIAL GENERATION

M. ESCOBAR*, A. CASTILLO*, A. ROMERO, P. ARBELÁEZ

WORKSHOP ON SIMULATION AND SYNTHESIS IN MEDICAL IMAGING (SASHIMI) 2020

Abstract

Ultrasound images are used for a wide variety of medical purposes because of their capacity to study moving structures in real time. However, the quality of ultrasound images is significantly affected by external factors limiting interpretability. We present UltraGAN, a novel method for ultrasound enhancement that transfers quality details while preserving structural information. UltraGAN incorporates frequency loss functions and an anatomical coherence constraint to perform quality enhancement. We show improvement in image quality without sacrificing anatomical consistency. We validate UltraGAN on a publicly available dataset for echocardiography segmentation and demonstrate that our quality-enhanced images are able to improve downstream tasks. To ensure reproducibility we provide our source code and training models.

Universidad de los Andes | Monitored by Mineducación
Recognition as University: Decree 1297 of May 30th, 1964.
Recognition as legal entity: Resolution 28 of February 23, 1949 Minjusticia.

© Universidad de los Andes. All rights reserved.