TOWARDS ROBUST GENERAL MEDICAL IMAGE SEGMENTATION

L. DAZA, J. C. PÉREZ, P. ARBELÁEZ

MICCAI 2021

Abstract

The reliability of Deep Learning systems depends on their accuracy but also on their robustness against adversarial perturbations to the input data. Several attacks and defenses have been proposed to improve the performance of Deep Neural Networks under the presence of adversarial noise in the natural image domain. However, robustness in computer-aided diagnosis for volumetric data has only been explored for specific tasks and with limited attacks. We propose a new framework to assess the robustness of general medical image segmentation systems. Our contributions are two-fold: (i) we propose a new benchmark to evaluate robustness in the context of the Medical Segmentation Decathlon (MSD) by extending the recent AutoAttack natural image classification framework to the domain of volumetric data segmentation, and (ii) we present a novel lattice architecture for RObust Generic medical image segmentation (ROG). Our results show that ROG is capable of generalizing across different tasks of the MSD and largely surpasses the state-of-the-art under sophisticated adversarial attacks.

Ground truth
Prediction on a clean image
Prediction on adversarial example

METHOD


RESULTS


Universidad de los Andes | Monitored by Mineducación
Recognition as University: Decree 1297 of May 30th, 1964.
Recognition as legal entity: Resolution 28 of February 23, 1949 Minjusticia.

© Universidad de los Andes. All rights reserved.