OBJECT INSTANCE SEGMENTATION AND FINE-GRAINED LOCALIZATION USING HYPERCOLUMNS

HARIHARAN, B., ARBELAEZ, P., GIRSHICK, R., AND MALIK, J.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 39(4), 627-639.

Abstract

Recognition algorithms based on convolutional networks (CNNs) typically use the output of the last layer as a feature representation. However, the information in this layer may be too coarse spatially to allow precise localization. On the contrary, earlier layers may be precise in localization but will not capture semantics. To get the best of both worlds, we define the hypercolumn at a pixel as the vector of activations of all CNN units above that pixel. Using hypercolumns as pixel descriptors, we show results on three fine-grained localization tasks: simultaneous detection and segmentation, where we improve state-of-the-art from 49.7 mean APr to 62.4, keypoint localization, where we get a 3.3 point boost over a strong regression baseline using CNN features, and part labeling, where we show a 6.6 point gain over a strong baseline.

Universidad de los Andes | Monitored by Mineducación
Recognition as University: Decree 1297 of May 30th, 1964.
Recognition as legal entity: Resolution 28 of February 23, 1949 Minjusticia.

© Universidad de los Andes. All rights reserved.