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a b s t r a c t 

Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic- 

assisted interventions. While numerous methods for detecting, segmenting and tracking of medical in- 

struments based on endoscopic video images have been proposed in the literature, key limitations re- 

main to be addressed: Firstly, robustness , that is, the reliable performance of state-of-the-art methods 
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2 https://endovis.grand-challenge.org/. 
. Introduction 

Minimally invasive surgery has become increasingly common 

ver the past years ( Siddaiah-Subramanya et al., 2017 ). However, 

ssues such as limited view, a lack of depth information, haptic 

eedback and increased difficulty in handling instruments have 

ncreased the complexity for the surgeons. Surgical data science 

pplications ( Maier-Hein et al., 2017 ) could help the surgeon to 

vercome those limitations and to increase patient safety. These 

pplications, e.g. surgical skill assessment ( Law et al., 2017; Lin 

t al., 2019 ), augmented reality ( Wang et al., 2017; Burström et al.,

019 ), assistance robots ( Amini Khoiy et al., 2016; Zhang and Gao, 

020 ), vision-based force estimation ( Su et al., 2018 ) or depth 

nhancement ( De Paolis and De Luca, 2019 ), are often based on 

he segmentation and/or tracking of medical instruments during 

urgery. Currently, commercial tracking systems usually rely on 

ptical or electromagnetic markers and, therefore, also require 

dditional hardware ( Bianchi et al., 2019; Zhou et al., 2019 ), which 

re expensive, need extra space and require technical knowledge. 

lternatively, with the recent success of deep learning methods in 

he medical domain ( Esteva et al., 2019 ) and first surgical data sci-

nce applications ( Fawaz et al., 2019; Nguyen et al., 2019 ), video- 

nly based approaches offer new opportunities to handle difficult 

mage scenarios such as bleeding, light over-/underexposure, 

moke and reflections ( Bodenstedt et al., 2018 ). Video-only based 

pproaches offer new opportunities to handle difficult image sce- 

arios such as bleeding, light over-/underexposure, smoke and re- 

ections ( García-Peraza-Herrera et al., 2016; Kurmann et al., 2017; 

aina et al., 2017; Pakhomov et al., 2019; Zhao et al., 2019 ). In

urn, the tracking information may directly affect the instructions 

rovided to the surgeon to navigate the surgical instruments. Fur- 

hermore, unreliable algorithms potentially reduce the acceptance 

n the part of the surgical team, and thus, the chances for trans- 

ation into the clinical routine ( Panch et al., 2019; Qayyum et al., 

020 ). 

As validation and evaluation of image processing methods is 

sually performed on the researchers’ individual data sets, find- 

ng the best algorithm suited for a specific use case is a difficult 

ask. Consequently, reported publication results are often difficult 

o compare ( Ioannidis, 2005; Armstrong et al., 2009 ). In order to 

vercome this issue, we can implement challenges to find algo- 

ithms that work best on specific problems. These international 

enchmarking competitions aim to assess the performance of sev- 

ral algorithms on the same data set, which enables a fair compar- 

son to be drawn across multiple methods ( Maier-Hein et al., 2018; 

019 ). 
2 
s (e.g. in the presence of blood, smoke or motion artifacts). Secondly, gen-

or a specific intervention in a specific hospital should generalize to other

ns for these limitations, we organized the Robust Medical Instrument Seg-

ge as an international benchmarking competition with a specific focus

zation capabilities of algorithms. For the first time in the field of endo-

allenge included a task on binary segmentation and also addressed multi-

tation. The challenge was based on a surgical data set comprising 10,040

 a total of 30 surgical procedures from three different types of surgery.

 methods for the three tasks (binary segmentation, multi-instance detec-

tation) was performed in three different stages with an increasing domain

he test data. The results confirm the initial hypothesis, namely that algo-

ith an increasing domain gap. While the average detection and segmen-

rming algorithms is high, future research should concentrate on detection

sing, moving and transparent instrument(s) (parts). 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

One international challenge which takes place on a regu- 

ar basis is the Endoscopic Vision (EndoVis) Challenge 2 . It hosts 

ub-challenges with a broad variety of tasks in the field of 

ndoscopic image processing and and has been held annually 

t the International Conference on Medical Image Computing 

nd Computer Assisted Interventions (MICCAI) since 2015 (ex- 

eption: 2016). However, data sets provided for instrument de- 

ection/tracking/segmentation in previous EndoVis editions (e.g., 

 Allan et al., 2019, 2020 )) comprised a relatively small number of 

ases (between ∼500 to ∼4,000) and generally represented best 

ases scenarios (e.g. with clean views, limited distortions in videos) 

hich did not comprehensively reflect the challenges in real-world 

linical applications. Although these competitions enabled primary 

nsights and comparison of the methods, the information gained 

n robustness and generalization capabilities of methods were lim- 

ted. 

To remedy these issues, we present the Robust Medical Instru- 

ent Segmentation (ROBUST-MIS) challenge 2019, which was part 

f the 4th edition of EndoVis at MICCAI 2019. We introduced a 

arge data set comprising more than 10,0 0 0 image frames for in- 

trument segmentation and detection, extracted from daily routine 

urgeries. The data set contained images which included all types 

f difficulties and was annotated by medical experts according to 

 pre-defined labeling protocol and subjected to a quality control 

rocess. The challenge addressed methods with a projected appli- 

ation in minimally invasive surgeries, in particular the tracking of 

edical instruments in the abdomen, with a special focus on the 

eneralizibility and robustness. This was achieved by introducing 

hree stages with increase in difficulty in the test phase. To em- 

hasize the robustness of methods, we used a ranking scheme that 

pecifically measures the worst-case performance of algorithms. 

Section 2 outlines the challenge design as a whole, includ- 

ng the data set. The results of the challenge are presented 

n Section 3 with a discussion following in Section 4 . The ap- 

endix includes challenge design choices regarding the organiza- 

ion (see Appendix A ), the labeling and submission instructions 

see Appendix B and Appendix C ), the rankings across all stages 

see Appendix D ) and the complete challenge design document 

see Appendix F ). 

. Methods 

The ROBUST-MIS 2019 challenge was organized as a sub- 

hallenge of the Endoscopic Vision Challenge 2019 at MICCAI 2019 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://endovis.grand-challenge.org/
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Fig. 1. Various levels of difficulty represented in the challenge data for the binary segmentation (two upper rows) and multi-instance detection/segmentation tasks (two 

lower rows). Input frames (a) are shown along with the reference segmentation masks for all tasks. The latter are shown as contours (b). 
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3 
n Shenzhen, China. Details of the challenge organization can be 

ound in Appendix A and Appendix F . The objective of the chal- 

enge, the challenge data sets and the assessment method used to 

valuate the participating algorithms are presented in the follow- 

ng. 

.1. Mission of the challenge 

The goal of the ROBUST-MIS 2019 challenge was to benchmark 

lgorithms designed for instrument detection and segmentation in 

ideos of minimally invasive surgeries. Specifically, we were inter- 

sted in (1) identifying robust methods for instrument detection 

nd segmentation, (2) assessing the generalization capabilities of 

he methods proposed and (3) identifying the image properties 

e.g. smoke, bleeding, motion artifacts) that make images partic- 

larly challenging. The challenges’ metrics and ranking schemes 

ere designed to assess these properties (see Section 2.3 ). 

The challenge was divided into three different tasks with sepa- 

ate evaluations and leaderboards (see Fig. 1 ). For the binary seg- 

entation task, participants had to provide precise contours of in- 

truments, using binary masks, with ‘1’ indicating the presence 

f a surgical instrument in a given pixel and ‘0’ representing the 

bsence thereof. Analogously, for the multi-instance segmentation 

ask, participants had to provide image masks by allotting num- 

ers ‘1’, ‘2’, etc. which represented different instances of medical 

nstruments. In contrast, the multi-instance detection task merely 

equired participants to detect and roughly locate instrument in- 

tances in video frames in which the location could be represented 

y arbitrary forms, such as bounding boxes. 

As detailed in Section 2.3 , the generalizability and performance 

f all participating algorithms was assessed in three stages with 

ncreasing levels of difficulty: 

• Stage 1: Test data was taken from the procedures (patients) 

from which the training data were extracted. 
• Stage 2: Test data was taken from the exact same type of 

surgery as the training data but from procedures (patients) not 

included in the training 
• Stage 3: Test data was taken from a different but similar type of 
surgery (and different patients) compared to the training data. 

3 
Before the algorithms were submitted to the challenge, partic- 

pants were only informed of the surgery types for stages 1 and 

 (rectal resection and proctocolectomy, see Section 2.2.1 ). For the 

hird stage, the surgery type (sigmoid resection) was referred to as 

nknown surgery to enable the generalizability to be tested. 

.2. Challenge data set 

.2.1. Data recording 

All data was recorded with a Karl Storz Image 1 laparoscopic 

amera (Karl Storz SE & Co. KG, Tuttlingen, Germany), with a 30 ◦

ptic lens. The Karl Storz Xenon 300 was used as a light source. 

ata acquisition was executed during daily routine procedures at 

he Heidelberg University Hospital, Department of Surgery in the 

ntegrated operating room (Karl Storz OR1 FUSION®). Whenever 

arts of the video showed the outside of the abdomen, these 

rames were manually excluded for the purpose of anonymiza- 

ion. To reduce storage and memory usage, image resolution was 

educed from 1920 × 1080 pixels (HD) in the primary video to 

60 × 540. Videos from 30 minimally invasive surgical procedures 

aken in three different types of surgery, namely 10 rectal resec- 

ion procedures, 10 proctocolectomy procedures and 10 procedures 

f sigmoid resection procedures, served as a basis for this challenge. 

 total of 10,040 images were extracted from these 30 procedures 

ccording to the procedure summarized in Section 2.2.2 . 

.2.2. Data extraction 

The frames were selected according to the following proce- 

ures: Initially, whenever the camera was outside the abdomen, 

he corresponding frames were removed to ensure anonymization. 

ext, all videos were sampled at a rate of 1 frame/sec, eliciting 

,456 extracted frames. To increase this number, additional frames 

ere extracted during the surgical phase transitions, resulting in 

 total of 10,040 frames. Labels for the surgical phases were avail- 

ble from the previous challenge EndoVis Surgical Workflow Analysis 

n the SensorOR 3 . All of these frames were annotated as described 

n 2.2.3 . 
https://endovissub2017- workflow.grand- challenge.org/. 

https://endovissub2017-workflow.grand-challenge.org/
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Table 1 

Case distribution of the data with frames per stage and surgery. Empty frames (ef) were classed as the % of frames in 

which an instrument did not appear. 

PROCEDURE TRAINING TESTING 

Stage 1 Stage 2 Stage 3 

proctocolectomy 2,943 (2% ef.) 325 (11% ef.) 225 (11% ef.) 0 

rectal resection 3,040 (20% ef.) 338 (20% ef.) 289 (15% ef.) 0 

sigmoid resection ∗ 0 0 0 2,880 (23% ef.) 

TOTAL 5,983 (17% ef.) 663 (15% ef.) 514 (13% ef.) 2,880 (23% ef.) 

∗ unknown surgery 
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.2.3. Label generation 

As stated in the introduction, a labeling mask was created for 

ach of the 10,040 extracted endoscopic video frames. The assign- 

ent of instances was done per frame, not per video. The in- 

trument labels were generated according to the following pro- 

edure: First, the company Understand AI 4 performed initial seg- 

entations on the extracted frames. Following this, the challenge 

rganizers analyzed the annotations, identified inconsistencies and 

greed on an annotation protocol (see Appendix B ). A team of 14 

ngineers and four medical students reviewed all of the annota- 

ions and, if necessary, refined them according to the annotation 

rotocol. In ambiguous or unclear cases, a team of two engineers 

nd one medical student generated a consensus annotation. For 

uality control, a medical expert went through all of the refined 

egmentation masks and reported potential errors. The final deci- 

ion on the labels was made by a team comprised of a medical 

xpert and an engineer. 

.2.4. Training and test case definition 

A training case comprised a 10 second video snippet in the 

orm of 250 endoscopic image frames and a reference annotation 

or the last frame. For training cases, the entire video was provided 

s context information along with information on the surgery type. 

est cases were identical in format but did not include a reference 

nnotation. 

For the division of the data into training and test data, in ac- 

ordance with the described testing scheme, all sigmoid resection 

rocedures were reserved for stage 3. The two shortest videos per 

rocedure (20%) were selected from the remaining 20 videos for 

tage 2 in order to have as much training data as possible. Fi- 

ally, every 10th annotated frame from the remaining 16 videos 

as used for stage 1 testing. All other frames were released as 

raining data. 

No validation cases for hyperparameter tuning were provided 

y the organizers; hence, it was up to the challenge participants to 

plit the training cases into training and validation data. In sum- 

ary, this led to a case distribution as shown in Table 1 . 

.3. Assessment method 

.3.1. Metrics 

The following metrics 5 were used to assess performance: 

• Binary Segmentation: Dice Similarity Coefficient ( DSC ) 

( Dice, 1945 ) and Normalized Surface Dice ( NSD ) 6 ( Nikolov et al.,

2018 ), 
• Multi-instance Detection: F1-score (other name for the 

DSC )( Dice, 1945 ), 
4 https://understand.ai. 
5 The implementation of all metrics can be found here: https://phabricator.mitk. 

rg/source/rmis2019/. 
6 https://github.com/deepmind/surface-distance. 

a

o

I  

4 
• Multi-instance Segmentation: Multi-instance Dice Similarity Co- 

efficient ( MI_DSC ) and multi-instance Normalized Surface Dice 

( MI_NSD ). 

The DSC is a widely used overlap metric for segmentation 

 Cardoso, 2018; Everingham et al., 2015 ) and detection challenges 

e.g., the Cerebral Aneurysm Detection (CADA) 20 ). It is defined as 

he harmonic mean of precision and recall: 

SC(Y, ̂  Y ) := 

2 | Y ∩ 

ˆ Y | 
| Y | + | ̂  Y | , (1) 

here Y denotes the reference annotation and 

ˆ Y the corresponding 

rediction of an image frame. 

The NSD served as a distance-based measurement for assessing 

erformance. In contrast to the DSC , which measures the overlap of 

olumes, the NSD measures the overlap of two surfaces (mask bor- 

ers) ( Nikolov et al., 2018 ). Furthermore, the metric uses a thresh- 

ld that is related to the inter-rater variability of the annotators. 

n our case, the inter-rater variability was computed by a pairwise 

omparison of a total of 5 annotators over n = 20 training images, 

hich resulted in a threshold of τ := 13 . Further analysis revealed 

hat thresholds above 10 had no effect on rankings. 

According to the challenge design, the indices of instrument in- 

tances between the references and predictions did not necessarily 

atch. The only requirement was that each instance was assigned 

 unique instrument index. Thus, all multi-instance tasks required 

he prediction and references to be matched, which was computed 

y applying the Hungarian algorithm ( Kuhn, 1955 ). 

To compute the MI_DSC and MI_NSD , matches of instrument 

nstances were computed. Afterwards, the resulting performance 

cores for each instrument instance per image have been ag- 

regated by the mean. The choice of the metrics (MI_)DSC and 

MI_)NSD were based on the Medical Segmentation Decathlon 

hallenge ( Cardoso, 2018 ) for the binary segmentation and the 

ulti instance tasks. 

Finally, the F1-score for the detection task requires the defi- 

ition of true positives (TP), false negatives (FN) and false posi- 

ives (FP), where F 1(Y, ̂  Y ) := 

2 T P 
2 T P+ F N+ F P . The assignment of match- 

ng candidates was done using the Hungarian algorithm. For this 

urpose, the intersection over union ( IoU ) was computed for each 

ossible pair of reference and prediction instances, which simply 

easures the overlap of two areas, divided by their union: 

oU(Y, ̂  Y ) := 

| Y ∩ 

ˆ Y | 
| Y ∪ 

ˆ Y | , (2) 

here in both cases Y denotes the reference annotation and 

ˆ Y the 

orresponding prediction of an image frame. Similar to the MI_DSC 

omputation, the Hungarian algorithm ( Kuhn, 1955 ) was used to 

ssign matching pairs of references and predictions. Assigned pairs 

f references and predictions (Y, ̂  Y ) were defined as TP if their 

oU(Y, ̂  Y ) > ξ := 0 . 3 . Reference instances without or with a smaller
20 https://cada.grand-challenge.org 

https://understand.ai
https://phabricator.mitk.org/source/rmis2019/
https://github.com/deepmind/surface-distance
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rediction than ξ were defined as FN. All instances that could not 

e assigned to a reference instance were assigned to FP. 

.3.2. Rankings 

Separate rankings for accuracy and robustness were computed 

or stage 3 of the challenge in order to address multiple aspects of 

he challenge purpose. To investigate accuracy, a significance rank- 

ng 7 as recently applied in the MSD ( Cardoso, 2018 ) and described 

n Algorithm 1 was computed. The robustness ranking specifically 

lgorithm 1 Ranking scheme for the binary and multi-instance 

egmentation tasks. 

1: Let T = { t 1 , . . . , t N } be the test cases for the given task. 

2: for all participating algorithms a i do 

3: Determine the performance m (a i , t j ) of algorithm a i for each 

test case t j 
4: if m (a i , t j ) == N/A then 

5: m (a i , t j ) = 0 

6: end if 

7: Aggregate metric values m (a i , t j ) with the following two ag- 

gregation methods: 

1. Accuracy: Compute the significance ranking . For each pair 

of algorithms, perform one-sided Wilcoxon signed rank 

tests with a significance level of α = 0 . 05 to assess differ- 

ences in the metric values. The accuracy rank r a (a i ) for 

algorithm~a i is based on the number of significant test 

results for each algorithm (Maier-Hein et~al., 2018; Car- 

doso, 2018). 

2. Robustness: Compute the 5% percentile of all m (a i , t j ) to 

get the robustness rank r r (a i ) for algorithm~a i . 

8: end for 

ocused on the worst case performance of methods. For this rea- 

on, the 5% percentile was computed instead of aggregating met- 

ic values with the mean or median. The computation of the F1- 

core naturally included a ranking as the TP, FN, FP were aggre- 

ated across all test cases. This led to a global metric value for 

ach participant which was used to create the ranking. Please note 

oth that the number of test cases and the number of algorithms 

ere generally differed for each task and stage. For the binary 

nd multi-instance segmentation tasks, the rankings were com- 

uted for both metrics, namely (MI_)DSC and (MI_)NSD , as shown 

n Algorithm 1 . 

These procedures produced nine rankings in total, namely 

our separate rankings (accuracy and robustness ranking for the 

MI_)DSC and the (MI_)NSD ) for the binary and the multi-instance 

egmentation task respectively and one ranking for multi-instance 

etection. In every ranking scheme, missing cases were set to the 

orst possible value, namely 0 for all metrics. 

.3.3. Statistical analyses 

The stability of the rankings was investigated via bootstrap- 

ing as this approach was identified as appropriate for quantifying 

anking variability ( Maier-Hein et al., 2018 ). The analysis was per- 

ormed using the R package challengeR ( Wiesenfarth et al., 2019b; 

019a ). The package was further used to create plots that visualize 

1) the absolute frequency of test cases in which each algorithm 

chieved the different ranks and (2) the bootstrap results for each 

lgorithm. 
7 Please note that an algorithm A with a higher rank (according to the signif- 

cance ranking) than algorithm B did not necessarily perform significantly better 

han algorithm B, as detailed in Wiesenfarth et al. (2019b) . 

c

t

5 
.3.4. Further analyses 

Expert baseline Given the imperfect reference (no perfect ground 

ruth) resulting from human annotation, it is typically difficult to 

etermine a plausible upper bound (optimal) performance. To ad- 

ress this knowledge gap, one additional labeling expert, a med- 

cal student with six years of experience in labeling (henceforth 

enoted ‘expert’) annotated all images from stage 2. Inspired by a 

uman vs. algorithms analysis for natural image multi-label clas- 

ification from Shankar et al. (2020) , we used the additional data 

n two principal ways. Firstly, we considered the expert as an ad- 

itional team and generated new rankings for both the binary and 

he multi-instance segmentation task using the (MI_)DSC . Secondly, 

e analyzed his performance as a function of the number of in- 

truments present in the image. Worst case analysis The influence 

f the image artifacts and the size and number of instruments 

ere analyzed. For this purpose, the 100 cases with the worst per- 

ormance were analyzed to investigate which image artifacts cause 

he main failures of the algorithms. 

. Results 

In total, 75 participants registered on the Synapse challenge 

ebsite ( Roß et al., 2019b ) before the submission deadline. Aside 

rom one team that decided to be excluded from the rankings, all 

eams with a working docker 8 submission were included in this 

aper. Their participation over the three challenge tasks and the 

otal amount of submissions is summarized in Table 2 . 

.1. Method descriptions of participating algorithms 

In the following, the participating algorithms are briefly sum- 

arized based on a description provided by the participants upon 

ubmission of the challenge results. Further details can be found in 

able 3 . 

eam caresyntax : Single network fits all 

The caresyntax team’s core idea for multi-instance segmentation 

as to apply a Mask R-CNN ( He et al., 2017 ) based on a single net-

ork with shared convolutional layers for both branches. They hy- 

othesized that it would help the network to generalize better if 

t was only provided with limited training data. The team decided 

o use a pre-trained version of the Mask R-CNN without including 

ny temporal information from the videos. In their results, they re- 

orted that their approach outperformed a U-Net-based model by 

 significant margin. The team worked out that tuning pixel-level 

nd mask-level confidence thresholds on the predictions played an 

mportant role. Furthermore, they acknowledged the importance 

hat the training set size had for improved predictions, both quali- 

atively and quantitatively. The team participated in all three tasks 

sing the same method. They produced the same output for the 

ulti-instance segmentation and detection tasks and binarized the 

utput of the multi-instance segmentation for the binary segmen- 

ation task. 

eam CASIA_SRL : Dense pyramid attention network for robust 

edical instrument segmentation 

The CASIA_SRL team proposed a network named Dense Pyra- 

id Attention Network ( Ni et al., 2020 ) for multi-instance seg- 

entation. They mainly focused on two problems: Changes in il- 

umination and surgical instruments scale changes. They proposed 

hat an attention module should be used, which was able to 

apture second-order statistics, with the goal of covering seman- 

ic dependencies between pixels and capturing the global context 
8 https://www.docker.com/. 

https://www.docker.com/
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Table 2 

Overview of selected participating teams over the three tasks, namely binary segmentation (BS), multi-instance detection (MID) and multi-instance segmentation (MIS). 

Team identifier BS MID MIS Affiliations 

caresyntax x x x 1 caresyntax, Berlin, Germany 

CASIA_SRL x x 1 University of Chinese Academy Sciences, Beijing, China 
2 State Key Laboratory of Management and Control for Complex Systems, 

Institute of Automation, Chinese Academy of Sciences, Beijing, China 

Djh x 1 SimulaMet, Oslo, Norway 
2 Arctic University of Norway (UiT), Tromsø, Norway 
3 Oslo Metropolitan University (Oslomet), Oslo, Norway 

fisensee x x x 1 University of Heidelberg, Germany 
2 Division of Medical Image Computing (MIC), German Cancer Research 

Center, Heidelberg, Germany 

haoyun x 1 Department of Computer Science, School of Informatics, Xiamen University, 

Xiamen, China and School of Mechanical 
2 Electrical Engineering, University of Electronic Science and Technology of 

China, Chengdu, China 

NCT x 1 National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: 

German Cancer Research Center (DKFZ), Heidelberg, German 
2 Faculty of Medicine and University Hospital Carl Gustav Carus, Technische 

Universität Dresden, Dresden, Germany 
3 Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), 

Dresden, Germany 

SQUASH x x x 1 Institute of Information Technology, Klagenfurt University, Austria 

Uniandes x x x 1 Universidad de los Andes, Bogotá, Colombia 

VIE x x x 1 Institute of Digital Media (NELVT), Peking University, Peking, China 

www x x x 1 Department of Computer Science, School of Informatics, Xiamen University, 

Xiamen, China 
2 Department of Computer Science Engineering, The Chinese University of 

Hong Kong, Hong Kong, China 

valid 

submissions 

10 6 7 

invalid 

submissions 

2 1 1 

TOTAL 12 7 8 
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 Ni et al., 2020 ). As the scale of surgical instruments constantly 

hanges as they move, the team introduced dense connections 

cross scales to capture multi-scale features for surgical instru- 

ents. The team did not use the provided videos to comple- 

ent the information contained in the individual frames. The team 

articipated in the binary and multi-instance segmentation tasks. 

hey produced the same output for the multi-instance segmen- 

ation and detection tasks and binarized the output of the multi- 

nstance segmentation for the binary segmentation task. 

eam Djh : A RASNet-based deep learning approach for the binary 

egmentation task 

The Djh team only participated in the binary segmentation task. 

hey used the Refined Attention Segmentation Network ( Ni et al., 

019 ) and put a large amount of effort into data augmentation and 

yperparameter tuning. Their motivation for using this architecture 

as its U-shape design which consists of contracting and expand- 

ng paths like the ResUNet++ ( Jha et al., 2019 ). The RASNet is able

o capture low-level and higher-level features. The team did not 

se the videos provided to complement the information contained 

n the individual frames. 

eam fisensee : OR-UNet 

Team fisensee’s core idea was to optimize a binary segmenta- 

ion algorithm and then adjust the output with a connected com- 

onent analysis in order to solve the multi-instance segmenta- 

ion and detection tasks ( Isensee and Maier-Hein, 2020 ). Inspired 

y the recent successes of the nnU-Net ( Isensee et al., 2018 ), the

uthors used a simple established baseline architecture (the U- 

et ( Ronneberger et al., 2015 )) and iteratively improved the seg- 

entation results through hyperparameter tuning. The method, re- 

erred to as optimized robust residual 2D U-Net (OR-UNet), was 

rained with the sum of DSC and cross-entropy loss and a multi- 

cale loss. During training, extensive data augmentation was used 
6 
o increase robustness. For the final prediction, they used an en- 

emble of eight models. They hypothesized that ensembles per- 

orm better than a single network. In their report, the team wrote 

hat they attempted to use the temporal information by stacking 

revious frames but did not observe a performance gain. Addition- 

lly, they noticed that in many cases, instruments did not touch 

hus they used a connected component analysis ( Shapiro, 1996 ) to 

eparate instrument instances. 

eam haoyun : Robust medical instrument segmentation using 

nhanced DeepLabV3+ 

The haoyun team only participated in the binary segmentation 

ask. They based their work on the DeepLabV3+ ( Chen et al., 2018 )

rchitecture in order to focus on high-level information. To enrich 

he receptive fields, they used a pre-trained ResNet-101 ( He et al., 

016 ) with dilated convolutions as encoder. To train their network, 

he team combined the DSC with the focal loss ( Lin et al., 2017 )

n order to focus more on less accurate pixels and challenging im- 

ges. In addition, the team used a 5-fold cross validation to im- 

rove both generalization and stability of the network. They did 

ot use the provided videos to complement the information con- 

ained in the individual frames. 

eam NCT : Robust medical instrument segmentation in robot-assisted 

urgery using deep convolutional neuronal network 

The NCT team only participated in the binary segmentation 

ask. They used a TernausNet with a pre-trained VGG16 network 

 Iglovikov and Shvets, 2018 ) as TernausNet had already showed 

romising results in two previous MICCAI EndoVis segmentation 

hallenges from 2017 and 2018 ( Allan et al., 2019 ). The team did 

ot use the provided videos to complement the information con- 

ained in the individual frames. 
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Table 3 

Overview of submitted methods. Abbreviations are as follows: Stochastic gradient descent (SGD) ( Kiefer et al., 1952 ), adaptive moment estimation (Adam) ( Kingma and 

Ba, 2014 ). 

Team Basic architecture Video data 

used? 

Additional data used? Loss functions Data augmentation Optimizer 

caresyntax Mask R-CNN ( He et al., 

2017 ) (backbone: 

ResNet-50 ( He et al., 

2016 )) 

No ResNet-50 pre-trained 

on 

MS-COCO ( Lin et al., 

2014 ) 

Smooth L1 loss, 

cross entropy loss, 

binary cross 

entropy loss 

Applied in each epoch: 

Random flip 

(horizontally) with 

probability 0.5 

SGD ( Kiefer et al., 

1952 ) 

CASIA_SRL Dence Pyramid 

Attention 

Network ( Ni et al., 

2020 ) (backbone: 

ResNet-34 ( He et al., 

2016 )) 

No ResNet-34 backbone 

pre-trained on Ima- 

geNet ( Russakovsky et al., 

2015 ) 

Hybrid loss: cross 

entropy 

−α log (Jaccard) 

Data augmented once 

before training: 

Random rotation, 

shifting, flipping 

Adam ( Kingma and 

Ba, 2014 ) 

Djh RASNet ( Ni et al., 

2019 ) 

No ResNet50 ( He et al., 

2016 ) pre-trained on 

ImageNet 

( Russakovsky et al., 

2015 ) 

DSC coefficient loss Applied on the fly on 

each batch: Crop 

(random and center), 

flip (horizontally and 

vertically), scale, 

cutout, greyscale 

Adam ( Kingma and 

Ba, 2014 ) 

fisensee 2D U- 

Net ( Ronneberger et al., 

2015 ) with residual 

encoder 

No No Sum of DSC and 

cross-entropy loss 

Randomly applied on 

the fly on each batch: 

Rotation, elastic 

deformation, scaling, 

mirroring, Gaussian 

noise, brightness, 

contrast, gamma 

SGD ( Kiefer et al., 

1952 ) 

haoyun 

DeepLabV3 + ( Chen et al., 

2018 ) with 

ResNet-101 ( He et al., 

2016 )) encoder 

No ResNet-101 

pre-trained on Ima- 

geNet ( Russakovsky et al., 

2015 ) 

Logarithmic DSC 

loss 

Applied on the fly on 

each batch: Flip 

(vertically), crop 

(random) 

Adam ( Kingma and 

Ba, 2014 ) 

NCT 

TernausNet ( Iglovikov and 

Shvets, 2018 ), replaced 

ReLU with eLU 

( Clevert et al., 2015 ) 

No VGG16 pre-trained on 

Ima- 

geNet ( Russakovsky et al., 

2015 ) 

Weighted binary 

cross entropy in 

combination with 

Jaccard Index 

Applied on the fly on 

each batch: Flips 

(horizontally and 

vertically), rotations of 

[ −10 , 10] ◦, image 

contrast manipulations 

(brightness, blur, 

motion-blur) 

Adam ( Kingma and 

Ba, 2014 ) 

SQUASH Mask R-CNN ( He et al., 

2017 ) (backbone: 

ResNet-50 ( He et al., 

2016 )) 

Yes, t o estimate 

the probability 

that last frame 

of video shows 

instrument 

instance 

No ResNet-50: Focal 

loss, Mask R-CNN: 

Mask R-CNN loss + 

cross entropy loss 

35% of total input for 

classification: Gaussian 

blur, sharpening, 

gamma contrast 

enhancement; 

additional 35% of 

images: Mirroring 

(along x- and y-axes); 

minority class: 

Translation 

(horizontally); 

non-instrument image 

frames are not 

processed 

SGD ( Kiefer et al., 

1952 ) 

Uniandes Mask R-CNN ( He et al., 

2017 ) (backbone: 

ResNet-101 ( He et al., 

2016 )) 

Yes, for data 

augmentation 

Pre-trained on 

MS-COCO ( Lin et al., 

2014 ) 

Standard Mask 

R-CNN loss 

functions 

Applied on the fly on 

each batch: Random 

flips (horizontally), 

propagation of 

annotation backwards 

to previous video 

frames 

SGD ( Kiefer et al., 

1952 ) 

VIE Mask R-CNN ( He et al., 

2017 ) (backbone: 

ResNet-50 ( He et al., 

2016 )) 

Yes, calculating 

the optical 

flow over 5 

frames 

No RPN class loss, 

MASK R-CNN loss 

Applied on the fly on 

each batch: Image 

resizing (1024x1024), 

bounding boxes, label 

generation 

N/A 

www 

9 Mask R-CNN ( He et al., 

2017 ) (backbone: 

ResNet-50 ( He et al., 

2016 )) 

No Pre-trained 9 on 

ImageNet 

( Russakovsky et al., 

2015 ) 

Smooth L1 loss, 

focal loss, binary 

cross entropy loss 

Applied on the fly on 

each batch: Random 

flip (horizontally and 

vertically), rotations of 

[0 , 10] ◦

Adam ( Kingma and 

Ba, 2014 ) 

7 
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10 Please note that this team used data from the EndoVis 2017 challenge 

( Allan et al., 2019 ) to visually check their performance on a different medical data 

set. The participation policies (see Appendix A ) prohibit the use of other medical 
eam SQUASH : An ensemble of models, combining image frame 

lassification and multi-instance segmentation 

Team SQUASH’s hypothesis was that they could increase the 

obustness and generalizability of all challenge tasks simultane- 

usly by using multiple recognition task training. In training their 

ethod from scratch, they assumed that the network capabilities 

ere fully utilized to learn detailed instrument features. Based on 

 ResNet50 ( He et al., 2016 ), the team used the video data provided

nd built a classification model in order to predict all instrument 

rames in a sequence of video frames. On top of this classification 

odel, they built a segmentation model by employing a Mask R- 

NN ( He et al., 2017 ) to detect multiple instrument instances in 

he image frames. The segmentation model was trained by lever- 

ging the preliminary trained classification model on instrument 

mages as a feature extractor to deepen the learning of the task of 

nstrument segmentation. Both models were combined in a two- 

tage framework to process a sequence of video frames. The team 

eported that their method had trouble dealing with instrument 

cclusions, but on the other hand, they were surprised to find that 

t handled reflections and black borders well. 

eam Uniandes : Instance-based instrument segmentation with 

emporal information 

Team Uniandes based their multi-instance segmentation ap- 

roach on the Mask R-CNN ( He et al., 2017 ). For training purposes,

hey created an experimental framework with a training and vali- 

ation split as well as supplementary metrics in order to identify 

he best version of their method and gain insight into the perfor- 

ance and limitations. Data augmentation was performed by cal- 

ulating the optical flow with a pre-trained FlowNet2 ( Ilg et al., 

017 ) and using the flow to map the reference annotation on to 

he previous frames. However, they did not find significant benefits 

n using the augmentation technique. The team participated in all 

hree tasks. They produced the same output for the multi-instance 

egmentation and detection tasks and binarized the output of the 

ulti-instance segmentation for the binary segmentation task. The 

eam observed that their approach was limited in terms of finding 

ll instruments in an image frame, but once an instrument was 

ound it was segmented with a high DSC score. Although the team 

chieved good metric scores they stated that they fell short in seg- 

enting small or partial instruments and instruments covered by 

moke. 

eam VIE : Optical flow-based instrument detection and segmentation 

The VIE team approached the multi-instance segmentation task 

ith an optical flow-based method. Their hypothesis was that the 

etection of moving parts in the image enables medical instru- 

ents to be detected and segmented. For their approach, they cal- 

ulated the optical flow over the last five frames of a case by using 

he OpenCV 

9 library and concatenated the optical flow with the 

aw image as input for a Mask R-CNN ( He et al., 2017 ). The team

ssumed that this would reduce most of unnecessary clutter seg- 

entation. The team participated in all three tasks. They produced 

he same output for the multi-instance segmentation and detection 

asks and binarized the output of the multi-instance segmentation 

or the binary segmentation task. The team hypothesized that the 

emporal data could have been used more effectively. 

eam www : Integration of Mask R-CNN and DAC block 9 

Team www proposed that a framework based on Mask R-CNN 

 He et al., 2017 ) to handle the three tasks in the challenge. Based

n the observation that the instruments have variable sizes, their 

dea was to enlarge the receptive field and tune the anchor size 
9 https://opencv.org/. 

d

fi

a

8 
or the Mask R-CNN. In addition, the team integrated DAC blocks 

 Gu et al., 2019 ) into the framework to collect more information. 

he team participated in all three tasks. They produced the same 

utput for the multi-instance segmentation and detection tasks 

nd binarized the output of the multi-instance segmentation for 

he binary segmentation task. The team reported that including 

emporal information might have helped to improve their perfor- 

ance. 10 

.2. Individual performance results for participating teams 

The teams’ individual performances in both segmentation tasks 

re presented in Fig. 2 and Table 4 . The dot- and boxplots show 

he metric values for each algorithm over all test cases in stage 3. 

.3. Challenge rankings for stage 3 

As described in Section 2.3.2 , an accuracy and a robustness 

anking were computed for both metrics of the segmentation tasks 

resulting in 4 rankings for each task). These are shown in Tables 5 

nd 7 . For the multi-instance detection task, the F1-score was com- 

uted for each participant (see Table 6 ). The metric computation 

lready included aggregated values, therefore only one ranking was 

omputed for this task. 

To provide deeper insight in the ranking variability, ranking 

eatmaps (see Fig. 3 ) and blob plots (see Fig. 4 ) were computed for

ll rankings of both segmentation tasks. Ranking heatmaps were 

sed to visualize the challenge assessment data ( Wiesenfarth et al., 

019b ). Blob plots were used to visualize ranking stability based on 

ootstrap sampling ( Wiesenfarth et al., 2019b ). 

The computed rankings for the remaining stages are given in 

ppendix D . 

.4. Comparison across all stages 

Fig. 5 shows the comparison of the average (MI_)DSC perfor- 

ances of the participating algorithms over the three evaluation 

tages (see Section 2 ) for both segmentation tasks. For this pur- 

ose, boxplots were generated for both tasks over the average met- 

ic values per team. A clear performance drop is visible in line 

ith the increasing difficulty of the stages: Average performance 

roduces median values of 0.88 (min: 0.73, max: 0.92) for the bi- 

ary segmentation task and 0.80 (min: 0.65, max: 0.84) for the 

ulti-instance segmentation task for stage 1. For stage 2, the me- 

ian metric values decrease to 0.87 (min: 0.76, max: 0.90) and 0.78 

min: 0.64, max: 0.84) and finally, the performance for stage 3 re- 

ulted in a median of 0.85 (min: 0.69, max: 0.89) and 0.76 (min: 

.60, max: 0.80). 

.5. Further analysis 

Expert baseline Only the rankings of the (MI_)DSC metrics were 

sed to compare the algorithms’ performances with that of a hu- 

an annotator, as similar results were obtained for the (MI_)NSD . 

s images in stage 2 contain only a maximum of three instrument 

nstances, the analysis can only show differences for n instances, 

here n ∈ { 1 , 2 , 3 } . In both tasks, the expert is the winner for both

ankings. Team fisensee shares the first rank with the expert in 

he accuracy rankings for the binary segmentation task and the 
ata for algorithm training or hyperparameter tuning. The challenge organizers de- 

ned this case as a grey zone but noted that the team may have had a competitive 

dvantage in terms of performance generalization. 

https://opencv.org/
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Fig. 2. Dot- and boxplots showing the individual performances of algorithms on the binary segmentation (BS; top) and multi-instance segmentation (MIS; bottom) tasks. 

The (multi-instance) Dice Similarity Coefficient ( (MI_)DSC ; left) and the (multi-instance) Normalized Surface Distance ( (MI_)NSD ; right) were used as metrics. 

Table 4 

Quantitative results of all participating methods for all three stages for the tasks binary and multi-instance segmentation. The metrics are DSC for the binary and MI_DSC for 

the multi-instance segmentation task. The table contains the mean, median and the 5th (Q05), 25th (Q25), 75th (Q75) and 95th (Q95) quantile for each metric. 

Binary instance segmentation 

Team Stage 1 Stage 2 Stage 3 

Mean Median Q5 Q25 Q75 Q95 Mean Median Q05 Q25 Q75 Q95 Mean Median Q5 Q25 Q75 Q95 

CASIA_SRL 0.90 0.95 0.70 0.91 0.96 0.98 0.89 0.95 0.43 0.91 0.97 0.98 0.88 0.94 0.50 0.89 0.96 0.98 

caresyntax 0.89 0.94 0.69 0.91 0.96 0.98 0.88 0.95 0.36 0.91 0.96 0.98 0.85 0.94 0.00 0.89 0.96 0.97 

Djh 0.81 0.90 0.08 0.81 0.94 0.96 0.79 0.90 0.03 0.78 0.94 0.97 0.75 0.87 0.00 0.69 0.93 0.96 

NCT 0.73 0.87 0.04 0.62 0.94 0.97 0.76 0.86 0.11 0.68 0.94 0.97 0.69 0.81 0.00 0.58 0.92 0.97 

SQUASH 0.88 0.93 0.55 0.88 0.95 0.97 0.85 0.93 0.34 0.87 0.95 0.97 0.83 0.92 0.22 0.85 0.95 0.97 

Uniandes 0.90 0.94 0.71 0.91 0.96 0.97 0.89 0.95 0.41 0.92 0.96 0.97 0.87 0.94 0.28 0.90 0.96 0.97 

VIE 0.79 0.87 0.30 0.76 0.92 0.95 0.77 0.87 0.00 0.74 0.91 0.95 0.76 0.86 0.00 0.73 0.91 0.94 

fisensee 0.92 0.96 0.76 0.93 0.97 0.98 0.90 0.96 0.54 0.93 0.97 0.98 0.88 0.95 0.34 0.91 0.97 0.98 

haoyun 0.90 0.95 0.64 0.91 0.96 0.98 0.89 0.95 0.42 0.91 0.97 0.98 0.89 0.94 0.52 0.90 0.96 0.98 

www 0.88 0.92 0.68 0.88 0.94 0.96 0.86 0.92 0.37 0.88 0.94 0.95 0.85 0.91 0.52 0.86 0.94 0.95 

expert - - - - - - 0.91 0.96 0.73 0.93 0.97 0.98 - - - - - - 

Multi-instance segmentation 

Team Stage 1 Stage 2 Stage 3 

Mean Median Q5 Q25 Q75 Q95 Mean Median Q05 Q25 Q75 Q95 Mean Median Q5 Q25 Q75 Q95 

CASIA_SRL 0.65 0.69 0.24 0.44 0.91 0.96 0.64 0.68 0.18 0.43 0.91 0.96 0.60 0.55 0.19 0.41 0.88 0.95 

caresyntax 0.82 0.93 0.32 0.83 0.96 0.97 0.80 0.94 0.32 0.68 0.96 0.98 0.77 0.93 0.00 0.58 0.95 0.97 

SQUASH 0.78 0.90 0.32 0.60 0.94 0.97 0.75 0.91 0.26 0.48 0.95 0.97 0.73 0.89 0.22 0.48 0.94 0.97 

Uniandes 0.84 0.94 0.40 0.88 0.96 0.97 0.84 0.94 0.39 0.88 0.96 0.97 0.80 0.93 0.26 0.67 0.95 0.97 

VIE 0.67 0.81 0.16 0.45 0.90 0.95 0.65 0.77 0.00 0.43 0.90 0.95 0.65 0.77 0.00 0.43 0.90 0.94 

fisensee 0.80 0.94 0.32 0.62 0.97 0.98 0.80 0.94 0.28 0.61 0.97 0.98 0.76 0.93 0.17 0.52 0.96 0.98 

www 

10 0.81 0.90 0.37 0.79 0.94 0.96 0.78 0.91 0.30 0.63 0.94 0.96 0.76 0.89 0.31 0.58 0.93 0.95 

expert - - - - - - 0.88 0.95 0.47 0.91 0.97 0.98 - - - - - - 

9 



T. Roß, A. Reinke, P.M. Full et al. Medical Image Analysis 70 (2021) 101920 

Fig. 3. Ranking heatmaps for the four rankings in the binary segmentation and multi-instance segmentation tasks. Each cell (i, A j ) shows the absolute frequency of test 

cases in which algorithm A j achieved rank i . The plots were generated using the package challengeR ( Wiesenfarth et al., 2019b; 2019a ). 

Fig. 4. Blob plots for the four rankings in the binary segmentation and multi-instance segmentation tasks. Blob plots are used to visualize ranking stability based on bootstrap 

sampling. Algorithms are color-coded, and the area of each blob at position (A i , rank j) is proportional to the relative frequency A i of the achieved rank j across b = 10 0 0 

bootstrap samples. The median rank for each algorithm is indicated by a black cross. 95% bootstrap intervals across bootstrap samples are indicated by black lines. The plots 

were generated using the package challengeR ( Wiesenfarth et al., 2019b; 2019a ). 

10 



T. Roß, A. Reinke, P.M. Full et al. Medical Image Analysis 70 (2021) 101920 

Table 5 

Binary segmentation: Rankings for stage 3 of the challenge. The upper part of the table shows the 

Dice Similarity Coefficient ( DSC ) rankings and the lower part shows the Normalized Surface Dis- 

tance ( NSD ) rankings (accuracy rankings on the left, robustness rankings on the right). Each ranking 

contains a team identifier, either a proportion of significant tests divided by the number of algo- 

rithms (prop. sign.) for the accuracy ranking or an aggregated DSC/NSD value (aggr. DSC/NSD value) 

and a rank. 

DSC: ACCURACY RANKING DSC: ROBUSTNESS RANKING 

Team identifier Prop. Sign. Rank Team identifier Aggr. DSC Value Rank 

fisensee 1.00 1 haoyun 0.52 1 

haoyun 0.89 2 CASIA_SRL 0.50 2 

CASIA_SRL 0.78 3 www 

10 0.49 3 

Uniandes 0.67 4 fisensee 0.34 4 

caresyntax 0.56 5 Uniandes 0.28 5 

SQUASH 0.44 6 SQUASH 0.22 6 

www 

10 0.33 7 caresyntax 0.00 7 

Djh 0.22 8 Djh 0.00 7 

VIE 0.11 9 NCT 0.00 7 

NCT 0.00 10 VIE 0.00 7 

NSD : ACCURACY RANKING NSD : ROBUSTNESS RANKING 

Team identifier Prop. Sign. Rank Team identifier Aggr. NSD Value Rank 

haoyun 0.89 1 haoyun 0.63 1 

fisensee 0.89 1 CASIA_SRL 0.62 2 

CASIA_SRL 0.67 3 www 

10 0.57 3 

Uniandes 0.67 3 fisensee 0.45 4 

caresyntax 0.56 5 Uniandes 0.32 5 

www 

10 0.44 6 SQUASH 0.26 6 

SQUASH 0.33 7 caresyntax 0.00 7 

VIE 0.22 8 Djh 0.00 7 

NCT 0.11 9 NCT 0.00 7 

Djh 0.00 10 VIE 0.00 7 

Table 6 

Multi-instance detection: Ranking for the mean average 

precision ( mAP ) in stage 3 of the challenge. 

Team identifier F1-score Rank 

Uniandes 0.91 1 

www 

10 0.90 2 

caresyntax 0.89 3 

SQUASH 0.86 4 

fisensee 0.86 5 

VIE 9 0.82 6 

m
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p

w
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Table 7 

Multi-instance segmentation: Rankings for stage 3 o

shows the multi-instance Dice Similarity Coefficient 

the multi-instance Normalized Surface Distance ( MI_

robustness rankings on the right). Each ranking con

significant tests divided by the number of algorithm

aggregated MI_DSC/MI_NSD value (aggr. MI_DSC/MI_N

MI_DSC: ACCURACY RANKING MI_

Team identifier Prop. Sign. Rank Team

fisensee 1.00 1 ww

Uniandes 0.83 2 Uni

caresyntax 0.67 3 SQU

SQUASH 0.33 4 CAS

www 

9 0.33 4 fisen

VIE 0.17 6 care

CASIA_SRL 0.00 7 VIE 

MI_NSD : ACCURACY RANKING MI_

Team identifier Prop. Sign. Rank Tea

Uniandes 1.00 1 ww

caresyntax 0.67 2 Uni

fisensee 0.50 3 CAS

www 

9 0.50 3 SQU

SQUASH 0.33 5 fisen

VIE 0.17 6 care

CASIA_SRL 0.00 7 VIE 

11 
ulti-instance segmentation task for frames with 1 instrument. 

he mean segmentation accuracy per instrument instance can be 

een in Fig. 6 . 

Worst case analysis For further analyses, we investigated the im- 

ge frames that produced the 100 best or worst metric values of 

articipating teams. This investigation revealed the strengths and 

eaknesses of the proposed methods. In general, algorithm per- 

ormance drops with the number of instruments in the image as 

llustrated in Fig. 7 . The algorithms succeeded in images contain- 

ng reflections, blood, different illuminations and in finding the 
f the challenge. The upper part of the table 

( MI_DSC ) rankings and the lower part shows 

NSD ) rankings (accuracy rankings on the left, 

tains a team identifier, either a proportion of 

s (prop. sign.) for the accuracy ranking or an 

SD value) and a rank. 

DSC: ROBUSTNESS RANKING 

 identifier Aggr. MI_DSC Value Rank 

w 

10 0.31 1 

andes 0.26 2 

ASH 0.22 3 

IA_SRL 0.19 4 

see 0.17 5 

syntax 0.00 6 

0.00 6 

NSD : ROBUSTNESS RANKING 

m identifier Aggr. MI_NSD Value Rank 

w 

10 0.35 1 

andes 0.29 2 

IA_SRL 0.27 3 

ASH 0.26 4 

see 0.16 5 

syntax 0.00 6 

0.00 6 
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Fig. 5. Boxplots of the variance across all test images for the (a) binary segmentation task with the Dice Similarity Coefficient ( DSC ) and (b) the multi-instance segmentation 

task with the Multi-instance Dice Similarity Coefficient ( (MI_)DSC ) for stages 1 to 3. The boxplots show the average algorithm performances (mean over all participant 

predictions per image) per image. 

Fig. 6. Median MI_DSC as a function of the number of instruments in the image 

for stage 2 of the test data for the multi-instance segmentation task. It shows the 

performance of all algorithms in comparison to the human expert. Clearly, all al- 

gorithms’ performance drops with the number of visible instruments in the image 

while the experts performance stays constant.. 
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i 11 https://endovissub- instrument.grand- challenge.org/. 
nside of the trocar (see Fig. 8 ). Problems still arose in image 

rames which contained small and transparent instruments. False 

ositives (mainly objects that were not defined as instruments) 

urned out to be a problem for all tasks. Furthermore, algorithm 

erformance was poor for images with instruments, close to an- 

ther as well as crossing, partially hidden or moving instruments, 

nstruments close to the image border and images containing 

moke (see Fig. 9 and 10 ). 

. Discussion 

We organized the first challenge in the field of surgical data sci- 

nce that (1) included tasks on multi-instance detection/tracking 

nd (2) placed particular emphasis on the robustness and general- 

zation capabilities of the algorithms. The key insights are: 
12 
1. Competing methods: These state-of-the-art methods are ex- 

clusively based on deep learning with a specific focus on U- 

Nets ( Ronneberger et al., 2015 ) (binary segmentation) and Mask 

R-CNNs ( He et al., 2017 ) (multi-instance detection and seg- 

mentation). For binary segmentation, the U-Net and the new 

DeepLabV3 architecture yielded an equally strong performance. 

For the multi-instance segmentation, a U-Net in combination 

with a connected component analysis was a strong baseline, 

but a Mask R-CNN approach was more promising overall, es- 

pecially in terms of robustness. 

2. Performance: 

(a) Binary segmentation: The mean performances of the win- 

ning algorithms for the accuracy ranking ( DSC of 0.88) 

and the robustness ranking ( DSC of 0.89) were similar to 

that of the previous winners of binary segmentation chal- 

lenges (winner of the EndoVis Instrument Segmentation 

and Tracking Challenge 2015 11 : DSC of 0.84; winner of the 

EndoVis 2017 Robotic Instrument Segmentation Challenge 

( Allan et al., 2019 ): DSC of 0.88). Given the high complexity 

of ROBUST-MIS’ data in comparison to previously released 

data sets, we attribute the fact that the performances are 

similar to the high amount of training data. 

(b) Multi-instance detection: The top three algorithms achieved 

F1-score ≥ 0 . 89 for stage 3. The winning algorithms featured 

very high accuracy, robustness and generalization capabili- 

ties. The few failure cases were related to the detection of 

small instruments, instruments close to another or instru- 

ments close to the image border. 

(c) Multi-instance segmentation: The mean MI_DSC scores for 

the winning algorithm of the accuracy ranking were 
• 0.82 for cases with one instrument instance, 
• 0.71 for cases with two instrument instances, 
• 0.62 for cases with three instrument instances, 
• 0.45 for cases with more than three instrument in- 

stances. 

https://endovissub-instrument.grand-challenge.org/
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Fig. 7. Boxplots of mean (multi-instance) Dice Similaritiy Coefficient ( (MI_)DSC ) values of participating algorithms for the binary and multi-instance segmentation tasks for 

stages 1 to 3 stratified by the number of instruments in the video frames. 
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Multi-instance segmentation in endoscopic video data, 

therefore cannot be regarded as a solved problem. 

3. Generalization: All participating methods for the binary seg- 

mentation tasks had a satisfying generalization capability over 

all three stages, with a median drop from 0.88 (stage 1) to 

0.85 (stage 3; 3%). The generalization capabilities for the multi- 

instance segmentation were slightly worse, with a median drop 

form 0.80 (stage 1) to 0.76 (stage 3; 5%). 

4. Robustness: The most successful algorithms are robust to re- 

flections, blood and smoke. The segmentation of small, close 

positioned, transparent, moving, overlapping and crossing in- 

struments, however, remains a great challenge that needs to be 

addressed. 

he following sections provide a detailed discussion on the chal- 

enge infrastructure ( Section 4.1.1 ), challenge data ( Section 4.1.3 ), 

hallenge methods ( Section 4.2.1 ) and challenge results 

 Section 4.2.2 ). 

.1. Challenge design 

In this section, we discuss the infrastucture and the data of our 

hallenge. 

.1.1. Challenge infrastructure 

We decided to use Synapse 12 as our challenge platform as it 

s the underlying platform of the well-known and DREAM chal- 

enges 13 , and, as such, provides a complete and easy to use en- 

ironment for both challenge participants and organizers. Further- 

ore, in addition to helping organizers monitor on how a chal- 

enge should be structured, it also helps them to follow current 

est practices by relying on docker submissions. However, while 

he overall experience with Synapse was very good, downloading 

he data was a problem due to slow download rates, which were 

ependent on the global download location and the size of the 

ata set (about 400 GB). Unlike the data download, the docker up- 

oad was very quick and easy to follow. 

The submission of docker containers and complete evaluation is 

lready in common usage in other disciplines (e.g. CARLA 

14 ). How- 

ver, most of the very recent challenges in the biomedical image 

nalysis community still use plain results submissions (e.g. BraTS 15 , 
12 https://www.synapse.org/. 
13 http://dreamchallenges.org/. 
14 https://carlachallenge.org/. 
15 http://braintumorsegmentation.org/. 

v

H

13 
iTS2019 16 , PAIP 2019 17 ). We believe that using dockers for the 

valuation is the best way as it can help (1) to avoid test data set

verfitting and (2) to prevent potential instances of fraud such as 

anually labeling the test data ( Reinke et al., 2018 ). However, us- 

ng docker containers also means more work for the individual par- 

icipants (in creating of the docker containers) and for the organiz- 

rs. In addition to providing the Computing Processing Unit (CPU) 

nd Graphics Processing Unit (GPU) resources, they have to provide 

upport for docker related questions and must have a strategy for 

ealing with invalid submissions (e.g. allowing re-submission). In 

ur challenge for example, submitted dockers were run on a small 

roportion of the training set to check whether the submissions 

orked. For five participants, the first submission failed. They were 

llowed to re-submit but we manually checked whether the net- 

ork parameters had changed. 

.1.2. Metrics and ranking 

Following recommendations of the Medical Segmentation De- 

athlon ( Cardoso, 2018 ), we decided to use two metrics for the 

egmentation task; an overlap measure ( DSC ) and a distance mea- 

ure ( NSD ). We used a non-global DSC for the multi-instance seg- 

entation, meaning that the DSC values of instrument instances 

ere first averaged to get an image-based score before taking the 

ean over all images. Another option would have been to use a 

lobal DSC measure, which would compute the DSC score globally 

ver the complete data set and all instrument instances. However, 

e decided to use the non-global metric to give higher weight to 

mall instruments. 

To put a particular focus on the robustness of the methods, we 

ecided to compute a dedicated ranking for the 5% percentile per- 

ormance of the methods, as summarized in Section 2.3.2 . Given 

ur previous work on ranking stability ( Maier-Hein et al., 2018 ), it 

an be assumed that a ranking based on the 5% percentile would 

aturally lead to less robust rankings compared to an aggregation 

ith the mean or the median. This is one possible explanation for 

he fact that the ranking stability for the robustness ranking was 

orse compared to that of the accuracy ranking, as shown in Fig. 4 .

Initially, during the challenge event at the MICCAI confer- 

nce, the mean average precision ( mAP) ( Everingham, Van Gool, 

illiams, Winn, Zisserman, 2010 ) metric was used (results are pro- 

ided in Table D.1 ) to determine the best performing algorithm. 

owever, due to an error in the implementation and missing con- 
16 https://kits19.grand-challenge.org/rules/. 
17 https://paip2019.grand-challenge.org/. 

https://www.synapse.org/
http://dreamchallenges.org/
https://carlachallenge.org/
http://braintumorsegmentation.org/
https://kits19.grand-challenge.org/rules/
https://paip2019.grand-challenge.org/
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Fig. 8. Test cases with high corresponding algorithm performances. Each row shows the raw frame, the reference contours and mask as well as the algorithm output of 

the participating teams of the multi-instance segmentation (MIS) task for one representative frame. The columns represent image frames with (a) overexposure, (b) clearly 

separated instruments, (c) blood and reflections, (d) smoke, respectively. For participants, the Dice Similarity Coefficient (DSC) values are provided per instrument instance 

( I i ). 

14 
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Fig. 9. Test cases with low corresponding algorithm performances. Each row shows the raw frame, the reference contours and mask as well as the algorithm output 

of the participating teams of the multi-instance segmentation (MIS) task for one representative frame. The columns represent image frames with (a) transparency, (b) 

small instruments, (c) overlapping instruments, (d) instruments near the border, respectively. For participants, the Dice Similarity Coefficient (DSC) values are provided per 

instrument instance ( I i ). 

15 
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Fig. 10. Test cases with low corresponding algorithm performances. Each row shows the raw frame, the reference contours and mask as well as the algorithm output of 

the participating teams of the multi-instance segmentation (MIS) task for one representative frame. The columns represent image frames with (a) an instrument overlain 

by tissue, (b) motion, (c) multiple instruments, (d) underexposure and multiple instruments, respectively. For participants, the Dice Similarity Coefficient (DSC) values are 

provided per instrument instance ( I i ). 

16 
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dence scores from the algorithms, we decided to update the rank- 

ng with the F1-score. 

.1.3. Challenge data 

In general, we observed many inconsistencies in the initial 

ata annotation, which is why we introduced a structured multi- 

tage annotation process involving medical experts and following a 

re-defined annotation protocol (see Appendix B ). We recommend 

hallenge organizers to generate such a protocol from the outset of 

heir challenge. 

It should be noted that three different surgical procedures were 

sed for the challenge, yet, these three procedures are all colorec- 

al surgeries that share similarities. A rectal resection incorporates 

arts of a sigmoid resection, for example. It is possible that per- 

ormance drops will be more radical when analyzing a wider vari- 

ty of procedures such as biliopancreatic or upper gastrointestinal 

urgeries. 

In the future, we will also prevent the potential side effects 

hich resulting from pre-processing. The fact that we downsam- 

led our video images may have harmed performance. However, 

ue to the fact that (1) all participants had the same starting con- 

itions, (2) the applied CNNs methods had to fit to GPUs and (3) 

ll participants reduced the resolution further, we think that these 

ffects are only minor. 

.2. Challenge outcome 

.2.1. Methods 

The variability of all of the methods, submitted for the binary 

egmentation was vast and ranged from 2D U-Net versions (Ter- 

ausNet, multi scale U-Net) to different implementations of the 

ask R-CNN with a ResNet backbone to the latest DeepLabV3 

etwork architecture. For the multi-instance detection and multi- 

nstance segmentation tasks, however, the range of the underlying 

rchitecture was much narrower, with multiple Mask R-CNN varia- 

ions and one combination of a U-Net, a classical approach and the 

rincipal component analysis (see Table 3 ). 

The most successful participating team ( haoyun ) in the binary 

egmentation task implemented a DeepLabV3+ architecture which 

ave them the top rank in three out of the four rankings for the 

inary segmentation task. A relatively simple approach based on 

he combination of a U-Net with a connected component analysis 

y the fisensee team turned out to be a strong baseline and won 

ccuracy rankings in both the binary segmentation task and the 

SC accuracy ranking for the multi-instance segmentation task. It 

as, however, less successful in terms of robustness. 

An increasingly relevant problem in reporting challenge results 

s the fact that it is often hard to understand which specific de- 

ign choice for a certain algorithm make this algorithm better than 

he competing methods ( Maier-Hein et al., 2018 ). Based on our 

hallenge analysis, we hypothesize that data augmentation and the 

pecifics of the training process are the key to a winning result. 

n other words, we believe that focusing on one architecture and 

erforming a broad hyperparameter search in combination with 

n extensive data augmentation technique and a well-thought-out 

raining procedure will create more benefit than testing many dif- 

erent network architectures without optimizing the training pro- 

ess. This is in line with recent findings in the field of radiological 

ata science ( Isensee et al., 2018 ). 

.2.2. Results 

The key insights have already been summarized at the begin- 

ing of the discussion. Methods that tackle the multi-instance seg- 

entation performed worse compared to the binary segmentation 

ask. In fact, when multiple instrument instances were visible in 

ne image, the algorithm performance decreased dramatically from 
17 
ver 0.8 for one instance to less than 0.6 for more than three in- 

tances (see Fig. 7 ). This is also reflected in Fig. 2 (c) and (d), which

how clusters in the boxplots at specific metric values. These clus- 

ers correspond to the performance with respect to different num- 

ers of instrument instances. For a single instrument, metric values 

re high, for multiple instruments the metric values are grouped 

round lower values. We thus conclude that detection of multiple 

nstances remains an unsolved problem. 

Although the described winning methods produce median 

I_DSC results above 0.9 (see Fig. 6 ), most of them could not out- 

erform the expert baseline in the multi-instance segmentation 

ask, especially if more than one instrument was present in the 

mage frames. In fact, only the teams fisensee (binary segmenta- 

ion) and Uniandes (multi-instance segmentation) produced similar 

erformances to the human annotator in stage 2 of the challenge. 

t should be noted that for pragmatic reasons, the additional la- 

eling was performed only on a subset of images and with only 

ne additional medical expert. The discrepancy in performance be- 

ween algorithms and experts may differ based on the data and 

he annotator. 

Generally, the expert accuracy is independent of the number 

f visible instances, while the performance of the algorithm drops 

ith an increasing number. However, to our surprise, the expert 

lso achieved comparatively low values in the robustness rank- 

ngs (aggregated values of 0.43 or 0.47 for n = 1 and n = 2 in-

truments). We found this mainly to be caused by missing or 

rong instrument instances (see Fig. E.1 ). However, where the ex- 

ert did detect an instance, the segmentation quality of this in- 

tance is almost always good ( MI_DSC = 0 . 9 is on the 10th per-

entile and MI_DSC = 0 . 95 on the 37th percentile), which is not the

ase for the algorithms as shown in see Fig. E.1 (Team Uniandes 

ith MI_DSC = 0.9 on the 14th percentile and MI_DSC = 0 . 95 on the

8th percentile; Team fisensee with MI_DSC = 0 . 9 on the 14th per- 

entile and MI_DSC = 0 . 95 on the 37th percentile). 

By analyzing the worst 100 cases across all of the methods, 

e found that all methods generally had issues with small, trans- 

arent or fast moving instruments. In addition, instruments close 

o other instruments or the image border, as well as partially 

idden or crossing instruments were difficult to detect and seg- 

ent (see Fig. 9 and 10 ). We also observed that classic chal- 

enges ( Bodenstedt et al., 2018 ) such as reflections, blood, different 

llumination conditions did not pose any great problems. Images 

cquired when the lens of the endoscope was inside of a trocar 

ere not particularly difficult to process. 

It should be noted that only three of the ten methods incor- 

orated the temporal video information provided with the frames 

o be annotated. One method used the video information to pre- 

ict the likelihood of instrument presence in a multi-task set- 

ing while two approaches used the videos to calculate the opti- 

al flow. However, based on the team reports and on the challenge 

esults, none of the teams where able taking a benefit from us- 

ng the video data, neither for the binary segmentation task, nor 

or the multi-instance detection/segmentation tasks. Given the way 

n which medical and technical experts annotated the data, this is 

urprising, and we speculate that much of the potential of tempo- 

al context remains to be discovered. 

Finally, it should be noted that an evaluation of the inference 

ime of methods was not included in this paper because a re- 

pective metric had not been announced to the challenge partic- 

pants. Although we assume that the participating teams had not 

ptimized their methods for performance, we performed a prelim- 

nary analysis of the docker submissions to approximate compu- 

ation times. This yielded runtimes between 0.07 and 7.3 seconds 

er image frame (mean: 1.09 seconds per image frame). Given 

he need for real-time inference, we recommend using a runtime- 

ased metric in future challenges of this kind. 
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ppendix A. Challenge organization 

The “Robust Medical Instrument Segmentation Challenge 2019 

ROBUST-MIS 2019)” was organized as a sub-challenge of the En- 

oscopic Vision Challenge 2019 at the International Conference 

n Medical Image Computing and Computer Assisted Interven- 

ion (MICCAI) in Shenzhen, China. It was organized by T. Roß, A. 

einke, M. Wagner, H. Kenngott, B. Müller, A. Kopp-Schneider and 

. Maier-Hein. See Section A.1 for detailed description. The chal- 

enge was intended as a one-time event with a fixed submission 

eadline. The platforms grand-challenge.org ( Roß et al., 2019a ) and 

ynapse.org ( Roß et al., 2019b ) served as websites for the chal- 

enge. Synapse served as data providing platform which was fur- 

her used to upload the challenge participants’ submissions. 

The participation policies for the challenge allowed only fully 

utomatic algorithms to be submitted. Although it was possible to 

se publicly available data released outside the field of medicine 

o train the methods or to tune hyperparameters, it was forbid- 

en to use any medical data, besides the training data offered by 

he challenge. For members of the organizers’ departments it was 

ossible to participate in the challenge but they were not eligible 

or awards and their participation would have been highlighted in 
18 https://understand.ai. 
19 https://www.nvidia.com. 
20 https://digitalsurgery.co. 

18 
he leaderboards. The challenge was funded by the company Dig- 

tal Surgery with a total monetary award of 10,0 0 0 €. As the chal-

enge comprised 9 rankings in total (see Section 2.3.2 ), each win- 

ing team was awarded 1,0 0 0 € and each runner-up team 125 €. 
oreover, the top three performing methods for each ranking were 

nnounced publicly. The remaining teams could decide whether or 

ot their identity was revealed. One team decided not to be men- 

ioned in the rankings. Finally, for this publication, each partici- 

ating team could nominate members of their team as co-authors. 

he method description submitted by the authors was used in the 

ublication (see Section 3.1 ). Personal data of the authors include 

heir names, affiliations and contact addresses. References used in 

he method description were published as well. Participating teams 

re allowed to publish their results separately with explicit per- 

ission from the challenge organizers once this paper has been 

ccepted for publication. 

The submission instructions for the participating methods are 

ublished on the Synapse website and consist of a detailed de- 

cription of the submission of docker containers which were used 

o evaluate the results. The complete submission instructions are 

rovided in Appendix C . Algorithms were only evaluated on the 

est data set, so no leaderboard was published before the final re- 

ult submission. The initial training data set was released on 1st 

uly 2019, the final training data set on 5th August 2019. Par- 

icipants could register for the challenge until 14th September 

019. The docker submission took place between 15th September 

nd 28th September 2019. There where two deadlines, the 21th 

eptember for participants, whose methods would require more 

han 3h of runtime and the 28th September for participants, whose 

ockers needs less than 3h runtime. Participating teams had to 

ubmit a method description in addition to the docker containers. 

The data sets of the challenge were fully anonymized (see 

ection 2.2 ) and could therefore be used without any ethics ap- 

roval ( Recital26, 2016 ). By registering in the challenge, each team 

greed (1) to use the data provided only in the scope of the chal- 

enge and (2) to neither pass it on to a third party nor use it for

ny publication or for commercial use. The data will be made pub- 

icly available for non-commercial use. 

The evaluation code for the challenge was made publicly avail- 

ble ( Roß and Reinke, 2019 ) and participants were encouraged to 

elease their methods in open source. 
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• T. Roß and A. Reinke organized the challenge, performed the 

evaluation and statistical analyses and wrote the manuscript 
• P.M. Full, H. Hempe, D. Mindroc-Filimon, P. Scholz, T.N. Tran and 

P. Bruno reviewed and labeled the challenge data set 
• M. Wagner, H. Kenngott, B.P. Müller-Stich organized the chal- 

lenge and performed the medical expert review of the chal- 

lenge data set 
• M. Apitz performed the medical expert review of the challenge 

data set 
• K. Kirtac, J. Lindström Bolmgrem, M. Stenzel, I. Twick and E. 

Hosgor participated in the challenge as team caresyntax in all 

three tasks 
• Z.-L. Ni, H.-B. Chen, Y.-J. Zhou, G.-B. Bian and Z.-G. Hou par- 

ticipated in the challenge as team CASIA_SRL in the binary and 

multi-instance segmentation tasks 
• D. Jha, M.A. Riegler and P. Halvorsen participated in the chal- 

lenge as team Djh in the binary segmentation task 
• F. Isensee and K. Maier-Hein participated in the challenge as 

team fisensee in all three tasks 
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team haoyun in the binary segmentation task 
• S. Leger, S. Bodenstedt and S. Speidel participated in the chal- 

lenge as team NCT in the binary segmentation task 
• S. Kletz and K. Schoeffmann participated in the challenge as 

team SQUASH in all three tasks 
• L. Bravo, C. González and P. Arbeláez participated in the chal- 

lenge as team Uniandes in all three tasks 
• R. Shi, Z. Li, T. Jiang participated in the challenge as team VIE in

all three tasks 
• J. Wang, Y. Zhang, Y. Jin, L. Zhu, L. Wang and P.-A. Heng partic-

ipated in the challenge as team www in all three tasks 
• A. Kopp-Schneider and M. Wiesenfarth performed statistical 

analyses 
• L. Maier-Hein organized the challenge, wrote the manuscript 

and supervised the project 

ppendix B. Annotation instructions 

1. Terminology 

• Matter: Anything that has mass, takes up space and can be 

clearly identified. 
• Examples: tissue, surgical tools, blood 

• Counterexamples: reflections, digital overlays, movement arti- 

facts, smoke 

Medical instrument to be detected and segmented: Elongated 

igid object introduced into the patient and manipulated directly 

rom outside the patient. 

• Examples: grasper, scalpel, (transparent) trocar, clip applicator, 

hooks, stapling device, suction 

• Counterexamples: non-rigid tubes, bandage, compress, needle 

(not directly manipulated from outside but manipulated with 

an instrument), coagulation sponges, metal clips 

2. Tasks 

Participating teams may enter competitions related to the fol- 

owing tasks: 

Binary segmentation: 

• Input: 250 consecutive frames (10sec) of a laparoscopic video 

with the last frame containing at least one medical instrument. 
• Output: A binary image, in which “0” indicates the absence of a 

medical instrument and a number “> 0” represents the presence 

of a medical instrument. 

Multi-instance detection and segmentation: 

• Input: 250 consecutive frames (10sec) of a laparoscopic video 

with the last frame containing at least one medical instrument. 
• Output: An image, in which “0” indicates the absence of a med- 
19 
ical instrument and numbers “1”, “2”,... represent different in- 

stances of medical instruments. 

For all three tasks, the entire corresponding video of the 

urgery is provided along with the training data as context infor- 

ation. In the test phase, only the test image along with the pre- 

eding 250 frames is provided. See Supplementary file S1. 

ppendix C. Submission instructions 

The following section provides the instruction document that 

hallenge participants obtained. See Supplementary file S3. 

ppendix D. Rankings for all stages 

The ranking schemes described in Section 2.3.2 were also com- 

uted for stages 1 and 2. To compare the performance of partici- 

ating teams across stages, stacked frequency plots of the observed 

anks, separated by the algorithms, for each ranking of the binary 

nd multi-instance segmentation tasks are displayed in Fig. D.1 

o D.8 . Observed ranks across bootstrap samples are presented 

ver the three stages the stages. The metric values for the multi- 

nstance detection task are displayed in Table D.1 

able D.1 

esults over all stages for the multi-instance detection task. 

Team identifier mAP 

Stage 1 Stage 2 Stage 3 

Uniandes 1.000 0.833 1.000 

VIE 0.750 0.778 0.978 

caresyntax 0.944 0.833 0.972 

SQUASH 0.967 1.000 0.966 

fisensee 1.000 1.000 0.964 

www 0.900 0.833 0.944 

able D.2 

esults over all stages for the multi-instance detection task as reported 

uring the challenge event. Those values have to be interpreted with care 

ue to an implementation error in the validation. 

Team identifier F1-score 

Stage 1 Stage 2 Stage 3 

Uniandes 0.94 0.93 0.91 

www 0.92 0.90 0.90 

caresyntax 0.92 0.91 0.89 

SQUASH 0.90 0.86 0.86 

fisensee 0.89 0.89 0.86 

VIE 0.84 0.82 0.82 

. 
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Fig. D.1. Stacked frequency plot for stages 1 to 3 with the Dice Similarity Coefficient ( DSC ) accuracy ranking of the binary segmentation task. The plots were generated using 

the package challengeR ( Wiesenfarth et al., 2019b; 2019a ). 

Fig. D.2. Stacked frequency plot for stages 1 to 3 with the Dice Similarity Coefficient ( DSC ) robustness ranking of the binary segmentation task. The plots were generated 

using the package challengeR ( Wiesenfarth et al., 2019b; 2019a ). 
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Fig. D.3. Stacked frequency plot for stages 1 to 3 with the Normalized Surface Distance ( NSD ) accuracy ranking of the binary segmentation task. The plots were generated 

using the package challengeR ( Wiesenfarth et al., 2019b; 2019a ). 

Fig. D.4. Stacked frequency plot for stages 1 to 3 with the Normalized Surface Distance ( NSD ) robustness ranking of the binary segmentation task. 
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Fig. D.5. Stacked frequency plot for stages 1 to 3 with (multi-instance) Dice Similarity Coefficient ( (MI_)DSC ) accuracy ranking of the multi-instance segmentation task. The 

plots were generated using the package challengeR ( Wiesenfarth et al., 2019b; 2019a ). 

Fig. D.6. Stacked frequency plot for stages 1 to 3 with the (multi-instance) Dice Similarity Coefficient ( (MI_)DSC ) robustness ranking of the multi-instance segmentation task. 

The plots were generated using the package challengeR ( Wiesenfarth et al., 2019b; 2019a ). 
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Fig. D.7. Stacked frequency plot for stages 1 to 3 with the (multi-instance) Normalized Surface Distance ( (MI_)NSD ) accuracy ranking of the multi-instance segmentation 

task. The plots were generated using the package challengeR ( Wiesenfarth et al., 2019b; 2019a ). 

Fig. D.8. Stacked frequency plot for stages 1 to 3 with the (multi-instance) Normalized Surface Distance ( (MI_)NSD ) robustness ranking of the multi-instance segmentation 

task. The plots were generated using the package challengeR ( Wiesenfarth et al., 2019b; 2019a ). 
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A

F erformances. Each row shows the raw frame, the reference contours and mask as well as 

t entation (MIS) task for one representative frame. The columns represent image frames 

w erformances, (c) low expert, high performances, (d) high expert, high algorithm perfor- 

m e provided per instrument instance ( I i ). 
ppendix E. Results for stage 2 including expert baseline 

ig. E.1. Example frames from stage 2 with corresponding participant and expert p

he (algorithm) output of the participating teams/expert of the multi-instance segm

ith (a) low expert, low algorithm performances, (b) high expert, low algorithm p

ances, respectively. For participants, the Dice Similarity Coefficient (DSC) values ar
24 
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ppendix F. Challenge design document 

See Supplementary file S2. . 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.media.2020.101920. 
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